Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Nat Prod ; 87(2): 186-194, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38277493

RESUMEN

The rise of multidrug resistant fungal infections highlights the need to identify and develop novel antifungal agents. Occidiofungin is a nonribosomally synthesized glycolipopeptide that has a unique mechanism of action, disrupting actin-mediated functions and inducing cellular apoptosis. Antifungal activity has been observed in vitro against various fungal species, including multidrug resistant Candida auris, and in vivo efficacy has been demonstrated in a murine vulvovaginal candidiasis model. Occidiofungin, a cyclic glycolipopeptide, is composed of eight amino acids and in previous studies, an asparagine residue was assigned at position 7 (ASN7). In this study, new structural variants of occidiofungin have been characterized which have aspartic acid (ASP7), glutamine (GLN7), or glutamic acid (GLU7) at position 7. The side chain of the ASP7 variant contains the only terminal carboxylic acid in the peptide and provides a useful site for selective chemical modifications. Analogues were synthesized at the ASP7 position and tested for antifungal activity. These analogues were shown to be more active as compared to the ASP7 variant against a panel of Candida species. The naturally occurring variants of occidiofungin with a side chain containing a carboxylic acid at the seventh amino acid position can be used to develop semisynthetic analogues with enhanced therapeutic properties.


Asunto(s)
Antifúngicos , Burkholderia , Glicopéptidos , Péptidos Cíclicos , Ratones , Animales , Antifúngicos/química , Burkholderia/química , Ácidos Carboxílicos , Pruebas de Sensibilidad Microbiana
2.
Carbohydr Res ; 535: 108991, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38065042

RESUMEN

We present the isolation and structural characterization of a novel nonionic dirhamnolipid methyl ester produced by the bacterium Burkholderia lata. The structure and the absolute configuration of the isolated dirhamnolipid bearing a symmetrical C14-C14 methyl ester chain were thoroughly investigated through chemical degradation and spectroscopic methods including 1D and 2D NMR analysis, HR-ESI-TOF-MS, chiral GC-MS, and polarimetry. Our work represents the first mention in the literature of a rhamnolipid methyl ester from Burkholderia species.


Asunto(s)
Burkholderia , Glucolípidos , Glucolípidos/química , Burkholderia/química , Cromatografía de Gases y Espectrometría de Masas , Ésteres/metabolismo
3.
Infect Genet Evol ; 116: 105532, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37995885

RESUMEN

Melioidosis is caused by Burkholderia pseudomallei (Bp) acquired from the environment. Conventional identification methods for environmental Bp are challenging due to the presence of closely related species. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is accurate for bacterial identification, but has been little used to identify Bp from environmental samples. This study aims to evaluate MALDI-TOF MS for the identification of Bp and closely related species isolated from environmental samples in Thailand using whole-genome sequencing (WGS) as the gold standard, including determining the best sample preparation method for this purpose. We identified Bp (n = 22), Burkholderia spp. (n = 28), and other bacterial species (n = 32) using WGS. MALDI-TOF analysis of all Bp isolates yielded results consistent with WGS. A decision-tree algorithm identified 16 important variable peaks, using the protein extraction method (PEM), demonstrating distinct MALDI-TOF profiles for the three categories (Bp, Burkholderia spp. and "other bacterial species"). Three biomarker peaks (4060, 5196, and 6553 Da) could discriminate Bp from other Burkholderia and closely related species with 100% sensitivity and specificity. Hence, the MALDI-TOF technique has shown its potential as a species discriminatory tool, providing results comparable to WGS for classification and surveillance of environmental Bp.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Microbiología del Suelo , Microbiología del Agua , Burkholderia/genética , Burkholderia/química , Burkholderia pseudomallei/genética , Burkholderia pseudomallei/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tailandia
4.
Metab Eng ; 75: 131-142, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36528227

RESUMEN

FK228 (romidepsin) is the only natural histone deacetylases (HDACs) inhibitor approved by FDA to treat cutaneous and peripheral T-cell lymphoma. However, the limited supply and severe cardiotoxicity of FK228 underscore the importance to develop an effective synthetic biology platform for the manufacturing and fine-tuning of this drug lead. In this work, we constructed a Burkholderia chassis for the high-yield production of FK228-family (unnatural) natural products. By virtue of the optimized Burkholderia-specific recombineering system, the biosynthetic gene cluster (BGC) encoding the FK228-like skeleton thailandepsins (tdp) in Burkholderia thailandensis E264 was replaced with an attB integration site to afford the basal chassis KOGC1. The tdp BGC directly captured from E264 was hybridized with the FK228-encoding BGC (dep) using the versatile Red/ET technology. The hybrid BGC (tdp-dep) was integrated into the attB site of KOGC1, resulting in the heterologous expression of FK228. Remarkably, the titer reached 581 mg/L, which is 30-fold higher than that of native producer Chromobacterium violaceum No. 968. This success encouraged us to further engineer the NRPS modules 4 or 6 of hybrid tdp-dep BGC by domain units swapping strategy, and eight new FK228 derivatives (1-8) varying in the composition of amino acids were generated. Especially, the titers of 2 and 3 in KOGC1 were up to 985 mg/L and 453 mg/L, respectively. 2 and 3 displayed stronger cytotoxic activity than FK228. All in all, this work established a robust platform to produce FK228 and its new derivatives in sufficient quantities for anticancer drug development.


Asunto(s)
Burkholderia , Depsipéptidos , Depsipéptidos/genética , Depsipéptidos/química , Depsipéptidos/farmacología , Burkholderia/genética , Burkholderia/química , Proteínas de Unión al ADN
5.
ACS Chem Biol ; 17(10): 2899-2910, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36174276

RESUMEN

Multidrug-resistant pathogens such as Burkholderia cenocepacia have become a hazard in the context of healthcare-associated infections, especially for patients admitted with cystic fibrosis or immuno-compromising conditions. Like other opportunistic Gram-negative bacteria, this pathogen establishes virulence and biofilms through lectin-mediated adhesion. In particular, the superlectin BC2L-C is believed to cross-link human epithelial cells to B. cenocepacia during pulmonary infections. We aimed to obtain glycomimetic antagonists able to inhibit the interaction between the N-terminal domain of BC2L-C (BC2L-C-Nt) and its target fucosylated human oligosaccharides. In a previous study, we identified by fragment virtual screening and validated a small set of molecular fragments that bind BC2L-C-Nt in the vicinity of the fucose binding site. Here, we report the rational design and synthesis of bifunctional C- or N-fucosides, generated by connecting these fragments to a fucoside core using a panel of rationally selected linkers. A modular route starting from two key fucoside intermediates was implemented for the synthesis, followed by evaluation of the new compounds as BC2L-C-Nt ligands with a range of techniques (surface plasmon resonance, isothermal titration calorimetry, saturation transfer difference NMR, differential scanning calorimetry, and X-ray crystallography). This study resulted in a hit molecule with an order of magnitude gain over the starting methyl fucoside and in two crystal structures of antagonist/lectin complexes.


Asunto(s)
Burkholderia cenocepacia , Burkholderia , Humanos , Lectinas/química , Burkholderia/química , Fucosa/química , Burkholderia cenocepacia/química , Burkholderia cenocepacia/metabolismo , Modelos Moleculares , Oligosacáridos/química
6.
Angew Chem Int Ed Engl ; 61(1): e202109339, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34713573

RESUMEN

Carbohydrate-binding proteins (lectins) are auspicious targets in drug discovery to combat antimicrobial resistance; however, their non-carbohydrate drug-like inhibitors are still unavailable. Here, we present a druggable pocket in a ß-propeller lectin BambL from Burkholderia ambifaria as a potential target for allosteric inhibitors. This site was identified employing 19 F NMR fragment screening and a computational pocket prediction algorithm SiteMap. The structure-activity relationship study revealed the most promising fragment with a dissociation constant of 0.3±0.1 mM and a ligand efficiency of 0.3 kcal mol-1 HA-1 that affected the orthosteric site. This effect was substantiated by site-directed mutagenesis in the orthosteric and secondary pockets. Future drug-discovery campaigns that aim to develop small molecule inhibitors can benefit from allosteric sites in lectins as a new therapeutic approach against antibiotic-resistant pathogens.


Asunto(s)
Lectinas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Sitio Alostérico/efectos de los fármacos , Burkholderia/química , Humanos , Lectinas/metabolismo , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/química
7.
Crit Rev Microbiol ; 48(2): 121-160, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34346791

RESUMEN

Species of Burkholderia are highly versatile being found not only abundantly in soil, but also as plants and animals' commensals or pathogens. Their complex multireplicon genomes harbour an impressive number of polyketide synthase (PKS) and nonribosomal peptide-synthetase (NRPS) genes coding for the production of antimicrobial secondary metabolites (SMs), which have been successfully deciphered by genome-guided tools. Moreover, genome metrics supported the split of this genus into Burkholderia sensu stricto (s.s.) and five new other genera. Here, we show that the successful antimicrobial SMs producers belong to Burkholderia s.s. Additionally, we reviewed the occurrence, bioactivities, modes of action, structural, and biosynthetic information of thirty-eight Burkholderia antimicrobial SMs shedding light on their diversity, complexity, and uniqueness as well as the importance of genome-guided strategies to facilitate their discovery. Several Burkholderia NRPS and PKS display unusual features, which are reflected in their structural diversity, important bioactivities, and varied modes of action. Up to now, it is possible to observe a general tendency of Burkholderia SMs being more active against fungi. Although the modes of action and biosynthetic gene clusters of many SMs remain unknown, we highlight the potential of Burkholderia SMs as alternatives to fight against new diseases and antibiotic resistance.


Asunto(s)
Antiinfecciosos , Burkholderia , Antiinfecciosos/farmacología , Burkholderia/química , Burkholderia/genética , Genómica , Familia de Multigenes , Sintasas Poliquetidas/genética , Metabolismo Secundario
8.
mBio ; 12(4): e0205421, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34399626

RESUMEN

Inflammasomes are cytosolic multiprotein signaling complexes that are activated upon pattern recognition receptor-mediated recognition of pathogen-derived ligands or endogenous danger signals. Their assembly activates the downstream inflammatory caspase-1 and caspase-4/5 (human) or caspase-11 (mouse), which induces cytokine release and pyroptotic cell death through the cleavage of the pore-forming effector gasdermin D. Pathogen detection by host cells also results in the production and release of interferons (IFNs), which fine-tune inflammasome-mediated responses. IFN-induced guanylate-binding proteins (GBPs) have been shown to control the activation of the noncanonical inflammasome by recruiting caspase-4 on the surface of cytosolic Gram-negative bacteria and promoting its interaction with lipopolysaccharide (LPS). The Gram-negative opportunistic bacterial pathogen Burkholderia thailandensis infects epithelial cells and macrophages and hijacks the host actin polymerization machinery to spread into neighboring cells. This process causes host cell fusion and the formation of so-called multinucleated giant cells (MNGCs). Caspase-1- and IFN-regulated caspase-11-mediated inflammasome pathways play an important protective role against B. thailandensis in mice, but little is known about the role of IFNs and inflammasomes during B. thailandensis infection of human cells, particularly epithelial cells. Here, we report that IFN-γ priming of human epithelial cells restricts B. thailandensis-induced MNGC formation in a GBP1-dependent manner. Mechanistically, GBP1 does not promote bacteriolysis or impair actin-based bacterial motility but acts by inducing caspase-4-dependent pyroptosis of the infected cell. In addition, we show that IFN-γ priming of human primary macrophages confers a more efficient antimicrobial effect through inflammasome activation, further confirming the important role that interferon signaling plays in restricting Burkholderia replication and spread. IMPORTANCE The Gram-negative bacteria of the Burkholderia species are associated with human diseases ranging from pneumonia to life-threatening melioidosis. Upon infection through inhalation, ingestion, or the percutaneous route, these bacteria can spread and establish granuloma-like lesions resulting from the fusion of host cells to form multinucleated giant cells (MNGCs). Burkholderia resistance to several antibiotics highlights the importance to better understand how the innate immune system controls infections. Here, we report that interferons protect human epithelial cells against Burkholderia-induced MNGC formation, specifically through the action of the interferon-induced GBP1 protein. Mechanistically, GBP1 acts by inducing caspase-4-dependent cell death through pyroptosis, allowing the infected cells to be quickly eliminated before bacterial spread and the formation of MNGCs. This study provides evidence that interferon-induced innate immune activation, through GBP1 and caspase-4, confers protection against Burkholderia infection, potentially opening new perspectives for therapeutic approaches.


Asunto(s)
Burkholderia/inmunología , Células Epiteliales/microbiología , Proteínas de Unión al GTP/genética , Células Gigantes/microbiología , Inflamasomas/inmunología , Interferón gamma/metabolismo , Burkholderia/química , Burkholderia/genética , Fusión Celular , Citosol , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Proteínas de Unión al GTP/metabolismo , Células Gigantes/fisiología , Células HeLa , Humanos , Inflamasomas/genética , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/fisiología , Fagocitosis , Transducción de Señal/inmunología
9.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443401

RESUMEN

The dinitrotoluene isomers 2,4 and 2,6-dinitrotoluene (DNT) represent highly toxic, mutagenic, and carcinogenic compounds used in explosive manufacturing and in commercial production of polyurethane foam. Bioremediation, the use of microbes to degrade residual DNT in industry wastewaters, represents a promising, low cost and environmentally friendly alternative technology to landfilling. In the present study, the effect of different bioremediation strategies on the degradation of DNT in a microcosm-based study was evaluated. Biostimulation of the indigenous microbial community with sulphur phosphate (2.3 g/kg sludge) enhanced DNT transformation (82% transformation, from 300 g/L at Day 0 to 55 g/L in week 6) compared to natural attenuation over the same period at 25 °C. The indigenous microbial activity was found to be capable of transforming the contaminant, with around 70% transformation of DNT occurring over the microcosm study. 16S rDNA sequence analysis revealed that while the original bacterial community was dominated by Gammaproteobacteria (30%), the addition of sulphur phosphate significantly increased the abundance of Betaproteobacteria by the end of the biostimulation treatment, with the bacterial community dominated by Burkholderia (46%) followed by Rhodanobacter, Acidovorax and Pseudomonas. In summary, the results suggest biostimulation as a treatment choice for the remediation of dinitrotoluenes and explosives waste.


Asunto(s)
Biodegradación Ambiental , Sustancias Explosivas/toxicidad , Microbiota/genética , Aguas del Alcantarillado/microbiología , Burkholderia/química , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , Dinitrobencenos/química , Dinitrobencenos/toxicidad , Sustancias Explosivas/química , Humanos , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , ARN Ribosómico 16S/genética
10.
Braz J Microbiol ; 52(4): 2145-2152, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34287810

RESUMEN

Gram-negative, aerobic, rod-shaped, non-spore-forming, motile bacteria, designated CBAS 719 T, CBAS 732 and CBAS 720 were isolated from leaf litter samples, collected in Espírito Santo State, Brazil, in 2008. Sequences of the 16S rRNA, gyrB, lepA and recA genes showed that these strains grouped with Burkholderia plantarii LMG 9035 T, Burkholderia gladioli LMG 2216 T and Burkholderia glumae LMG 2196 T in a clade of phytopathogenic Burkholderia species. Digital DNA-DNA hybridization experiments and ANI analyses demonstrated that strain CBAS 719 T represents a novel species in this lineage that is very closely related with B. plantarii. The genome sequence of the type strain is 7.57 Mbp and its G + C content is 69.01 mol%. The absence of growth on TSA medium supplemented with 3% (w/v) NaCl, citrate assimilation, ß-galactosidase (PNPG) activity, and of lipase C14 activity differentiated strain CBAS 719 T from B. plantarii LMG 9035 T, its nearest phylogenetic neighbor. Its predominant fatty acid components were C16:0, C18:1 ω7c, cyclo-C17:0 and summed feature 3 (C16:1 ω7c and/or C15:0 iso 2-OH). Based on these genotypic and phenotypic characteristics, the strains CBAS 719 T, CBAS 732 and CBAS 720 are classified in a novel Burkholderia species, for which the name Burkholderia perseverans sp. nov. is proposed. The type strain is CBAS 719 T (= LMG 31557 T = INN12T).


Asunto(s)
Antibiosis , Burkholderia , Ecosistema , Agaricales/efectos de los fármacos , Agaricales/fisiología , Antibiosis/fisiología , Aspergillus/efectos de los fármacos , Aspergillus/fisiología , Técnicas de Tipificación Bacteriana , Brasil , Burkholderia/química , Burkholderia/clasificación , Burkholderia/genética , ADN Bacteriano/genética , Fosfolípidos/análisis , Filogenia , Phytophthora/efectos de los fármacos , Phytophthora/fisiología , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética , Especificidad de la Especie , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología
11.
Org Lett ; 23(8): 3216-3220, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33797266

RESUMEN

We report a promoter-assisted glycosidation approach for the stereoselective synthesis of the 6-deoxy-ß-d-manno-heptopyranose oligosaccharides. SphosAuNTf2-promoted glycosidation of 6-deoxy-d-manno-heptopyranosyl o-hexynylbenzoate with common alcohols afforded a range of 6-deoxy-d-manno-heptosides with good to excellent ß-selectivities. The counterion and the ligand of SPhosAuNTf2 were found to have a dramatic effect on the formation of the 1,2-cis-ß-linked 6-deoxy-d-manno-heptosides. This approach was effectively applied to the stereocontrolled synthesis of the 6-deoxy-ß-d-manno-heptopyranose oligosaccharides relevant to Burkholderia pseudomallei and Burkholderia mallei.


Asunto(s)
Heptosas/síntesis química , Oligosacáridos/síntesis química , Burkholderia/química , Glicosilación , Heptosas/química , Estructura Molecular , Oligosacáridos/química
12.
J Enzyme Inhib Med Chem ; 36(1): 372-376, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33390061

RESUMEN

Burkholderia territorii, a Gram-negative bacterium, encodes for the ι-class carbonic anhydrase (CA, EC 4.2.1.1) BteCAι, which was recently characterised. It acts as a good catalyst for the hydration of CO2 to bicarbonate and protons, with a kcat value of 3.0 × 105 s-1 and kcat/KM value of 3.9 × 107 M-1 s-1. No inhibition data on this new class of enzymes are available to date. We report here an anion and small molecules inhibition study of BteCAι, which we prove to be a zinc(II)- and not manganese(II)-containing enzyme, as reported for diatom ι-CAs. The best inhibitors were sulphamic acid, stannate, phenylarsonic acid, phenylboronic acid and sulfamide (KI values of 6.2-94 µM), whereas diethyldithiocarbamate, tellurate, selenate, bicarbonate and cyanate were submillimolar inhibitors (KI values of 0.71-0.94 mM). The halides (except iodide), thiocyanate, nitrite, nitrate, carbonate, bisulphite, sulphate, hydrogensulfide, peroxydisulfate, selenocyanate, fluorosulfonate and trithiocarbonate showed KI values in the range of 3.1-9.3 mM.


Asunto(s)
Aniones/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Burkholderia/enzimología , Anhidrasas Carbónicas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Arsenicales/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos Borónicos/farmacología , Burkholderia/química , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sulfonamidas/farmacología , Ácidos Sulfónicos/farmacología , Compuestos de Estaño/farmacología , Zinc/química , Zinc/metabolismo
13.
Biotechnol Lett ; 43(2): 503-509, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33051809

RESUMEN

OBJECTIVE: Lipases are often used in immobilized form, but commercial immobilized lipases are costly. An alternative is to produce lipases in solid-state fermentation, dry the solids and then use the "dry fermented solids" (DFS) directly. We produced DFS by growing Burkholderia contaminans on a mixture of sugarcane bagasse and sunflower seed meal and used the DFS to esterify oleic acid with ethanol in subcritical and supercritical CO2 at 40 °C. RESULTS: Compared to a control without CO2 at atmospheric pressure, subcritical CO2 at 30 bar improved esterification activity 1.2-fold. Higher pressures, including supercritical pressures up to 150 bar, reduced activity to less than 80% of the control. At 30 bar, the esterification activity was improved a further 1.8-fold with the addition of 9% water (i.e. 9 g water per 100 g oleic acid) to the reaction medium. CONCLUSION: A subcritical CO2 atmosphere, with the addition of a small amount of water, improved the esterification activity of DFS containing lipases of Burkholderia contaminans.


Asunto(s)
Dióxido de Carbono/química , Esterificación/genética , Fermentación/genética , Lipasa/química , Biocombustibles , Burkholderia/química , Burkholderia/enzimología , Celulosa/química , Etanol/química , Ácido Oléico/química , Presión , Agua/química
14.
ACS Chem Biol ; 15(10): 2766-2774, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32808751

RESUMEN

The products of most secondary metabolite biosynthetic gene clusters (BGCs) have yet to be discovered, in part due to low expression levels in laboratory cultures. Reporter-guided mutant selection (RGMS) has recently been developed for this purpose: a mutant library is generated and screened, using genetic reporters to a chosen BGC, to select transcriptionally active mutants that then enable the characterization of the "cryptic" metabolite. The requirement for genetic reporters limits the approach to a single pathway within genetically tractable microorganisms. Herein, we utilize untargeted metabolomics in conjunction with transposon mutagenesis to provide a global read-out of secondary metabolism across large numbers of mutants. We employ self-organizing map analytics and imaging mass spectrometry to identify and characterize seven cryptic metabolites from mutant libraries of two different Burkholderia species. Applications of the methodologies reported can expand our understanding of the products and regulation of cryptic BGCs across phylogenetically diverse bacteria.


Asunto(s)
Productos Biológicos/análisis , Metaboloma , Burkholderia/química , Burkholderia/genética , Elementos Transponibles de ADN , Espectrometría de Masas , Metabolómica/métodos , Familia de Multigenes , Mutagénesis , Metabolismo Secundario/genética
15.
Inorg Chem ; 59(14): 10223-10233, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32602712

RESUMEN

The BthA protein from the microorganism Burkholderia thailandensis contains two hemes with axial His/OH2 and His/Tyr coordinations separated by the closest interheme distance of 14 Å. BthA has a similar structure and belongs to the same family of multiheme cytochrome c peroxidases as MauG, which performs long-range oxidation of the partner protein methylamine dehydrogenase. Magnetic Mössbauer spectroscopy of the diferric state of BthA corroborates previous structural work identifying a high-spin (His/OH2) peroxidatic heme and a low-spin (His/Tyr) electron transfer heme. Unlike MauG, addition of H2O2 fully converts the diferric form of BthA to a stable 2e- oxidized state, allowing a new assessment of this state. The peroxidatic heme is found to be oxidized to a canonical compound II, S = 1 oxoiron(IV) heme. In contrast, the electronic properties of the oxidized His/Tyr heme are puzzling. The isomer shift of the His/Tyr heme (0.17 mm/s) is close to that of the precursor S = 1/2 Fe3+ heme (0.21 mm/s) which suggests oxidation of the Tyr. However, the spin-dipolar hyperfine coupling constants are found here to be the same as those for the ferryl peroxidatic heme, indicating that the His/Tyr heme is also a compound II, S = 1 Fe4+ heme and ruling out oxidation of the Tyr. DFT calculations indicate that the unusually high isomer shift is not attributable to the rare axial His/Tyr heme coordination. The calculations are only compatible with spectroscopy for an unusually long Fe4+-OTyr distance, which is presumably under the influence of the protein environment of the His/Tyr heme moiety in the H2O2 oxidized state of the protein. The results offer new insights into how high valence intermediates can be tuned by the protein environment for performing long-range oxidation.


Asunto(s)
Proteínas Bacterianas/química , Hemo/química , Hemoproteínas/química , Histidina/química , Tirosina/química , Burkholderia/química , Teoría Funcional de la Densidad , Peróxido de Hidrógeno/química , Hierro/química , Modelos Químicos , Oxidación-Reducción , Espectroscopía de Mossbauer
16.
J Nat Prod ; 83(7): 2145-2154, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32631063

RESUMEN

The Burkholderia genus offers a promising potential in medicine because of the diversity of biologically active natural products encoded in its genome. Some pathogenic Burkholderia spp. biosynthesize a specific class of antimicrobial 2-alkyl-4(1H)-quinolones, i.e., 4-hydroxy-3-methyl-2-alkenylquinolines (HMAQs) and their N-oxide derivatives (HMAQNOs). Herein, we report the synthesis of a series of six HMAQs and HMAQNOs featuring a trans-Δ2 double bond at the C2-alkyl chain. The quinolone scaffold was obtained via the Conrad-Limpach approach, while the (E)-2-alkenyl chain was inserted through Suzuki-Miyaura cross-coupling under microwave radiation without noticeable isomerization according to the optimized conditions. Subsequent oxidation of enolate-protected HMAQs cleanly led to the formation of HMAQNOs following cleavage of the ethyl carbonate group. Synthetic HMAQs and HMAQNOs were evaluated in vitro for their antimicrobial activity against different Gram-negative and Gram-positive bacteria as well as against molds and yeasts. The biological results support and extend the potential of HMAQs and HMAQNOs as antimicrobials, especially against Gram-positive bacteria. We also confirm the involvement of HMAQs in the autoregulation of the Hmq system in Burkholderia ambifaria.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Antifúngicos/síntesis química , Antifúngicos/farmacología , Burkholderia/química , Quinolinas/síntesis química , Quinolinas/farmacología , Antibacterianos/química , Antifúngicos/química , Óxidos/química , Quinolinas/química , Análisis Espectral/métodos
17.
Mol Cell Proteomics ; 19(9): 1561-1574, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32576591

RESUMEN

Mass spectrometry has become an indispensable tool for the characterization of glycosylation across biological systems. Our ability to generate rich fragmentation of glycopeptides has dramatically improved over the last decade yet our informatic approaches still lag behind. Although glycoproteomic informatics approaches using glycan databases have attracted considerable attention, database independent approaches have not. This has significantly limited high throughput studies of unusual or atypical glycosylation events such as those observed in bacteria. As such, computational approaches to examine bacterial glycosylation and identify chemically diverse glycans are desperately needed. Here we describe the use of wide-tolerance (up to 2000 Da) open searching as a means to rapidly examine bacterial glycoproteomes. We benchmarked this approach using N-linked glycopeptides of Campylobacter fetus subsp. fetus as well as O-linked glycopeptides of Acinetobacter baumannii and Burkholderia cenocepacia revealing glycopeptides modified with a range of glycans can be readily identified without defining the glycan masses before database searching. Using this approach, we demonstrate how wide tolerance searching can be used to compare glycan use across bacterial species by examining the glycoproteomes of eight Burkholderia species (B. pseudomallei; B. multivorans; B. dolosa; B. humptydooensis; B. ubonensis, B. anthina; B. diffusa; B. pseudomultivorans). Finally, we demonstrate how open searching enables the identification of low frequency glycoforms based on shared modified peptides sequences. Combined, these results show that open searching is a robust computational approach for the determination of glycan diversity within bacterial proteomes.


Asunto(s)
Proteínas Bacterianas/análisis , Glicopéptidos/análisis , Péptidos/análisis , Polisacáridos/análisis , Proteoma/análisis , Proteómica/métodos , Acinetobacter baumannii/química , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/química , Burkholderia/química , Burkholderia/metabolismo , Campylobacter/química , Campylobacter/metabolismo , Cromatografía Liquida , Bases de Datos de Proteínas , Glicopéptidos/química , Glicosilación , Péptidos/química , Proteoma/química , Programas Informáticos , Espectrometría de Masas en Tándem
18.
Angew Chem Int Ed Engl ; 59(51): 23122-23126, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-32588959

RESUMEN

Genome mining of one of the protective symbionts (Burkholderia gladioli) of the invasive beetle Lagria villosa revealed a cryptic gene cluster that codes for the biosynthesis of a novel antifungal polyketide with a glutarimide pharmacophore. Targeted gene inactivation, metabolic profiling, and bioassays led to the discovery of the gladiofungins as previously-overlooked components of the antimicrobial armory of the beetle symbiont, which are highly active against the entomopathogenic fungus Purpureocillium lilacinum. By mutational analyses, isotope labeling, and computational analyses of the modular polyketide synthase, we found that the rare butenolide moiety of gladiofungins derives from an unprecedented polyketide chain termination reaction involving a glycerol-derived C3 building block. The key role of an A-factor synthase (AfsA)-like offloading domain was corroborated by CRISPR-Cas-mediated gene editing, which facilitated precise excision within a PKS domain.


Asunto(s)
4-Butirolactona/análogos & derivados , Antifúngicos/farmacología , Burkholderia/química , Hypocreales/efectos de los fármacos , Policétidos/farmacología , 4-Butirolactona/biosíntesis , 4-Butirolactona/química , 4-Butirolactona/farmacología , Animales , Antifúngicos/química , Antifúngicos/metabolismo , Burkholderia/genética , Burkholderia/metabolismo , Escarabajos , Pruebas de Sensibilidad Microbiana , Policétidos/química , Policétidos/metabolismo
19.
Sci Rep ; 10(1): 7626, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376849

RESUMEN

Plant cell suspension culture systems are valuable for the study of complex biological systems such as inducible defence responses and aspects of plant innate immunity. Perturbations to the cellular metabolome can be investigated using metabolomic approaches in order to reveal the underlying metabolic mechanism of cellular responses. Lipopolysaccharides from the sorghum pathogen, Burkholderia andropogonis (LPSB.a.), were purified, chemically characterised and structurally elucidated. The lipid A moiety consists of tetra- and penta-acylated 1,4'-bis-phosphorylated disaccharide backbone decorated by aminoarabinose residues, while the O-polysaccharide chain consists of linear trisaccharide repeating units of [→2)-α-Rha3CMe-(1 → 3)-α-Rha-(1 → 3)-α-Rha-(1 → ]. The effect of LPSB.a. in triggering metabolic reprogramming in Sorghum bicolor cells were investigated using untargeted metabolomics with liquid chromatography coupled to mass spectrometry detection. Cells were treated with LPSB.a. and the metabolic changes monitored over a 30 h time period. Alterations in the levels of phytohormones (jasmonates, zeatins, traumatic-, azelaic- and abscisic acid), which marked the onset of defence responses and accumulation of defence-related metabolites, were observed. Phenylpropanoids and indole alkaloids as well as oxylipins that included di- and trihydroxyoctadecedienoic acids were identified as signatory biomarkers, with marked secretion into the extracellular milieu. The study demonstrated that sorghum cells recognise LPSB.a. as a 'microbe-associated molecular pattern', perturbing normal cellular homeostasis. The molecular features of the altered metabolome were associated with phytohormone-responsive metabolomic reconfiguration of primary and secondary metabolites originating from various metabolic pathways, in support of defence and immunity.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Burkholderia/química , Lipopolisacáridos/farmacología , Metaboloma/efectos de los fármacos , Sorghum/citología , Sorghum/fisiología , Sorghum/metabolismo , Sorghum/microbiología
20.
Mater Sci Eng C Mater Biol Appl ; 109: 110617, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32229008

RESUMEN

The present study was performed to synthesize, for the first time, the magnesium oxide nanoparticles (MgO NPs) using the cell filtrate of the endobacterium Burkholderia rinojensis. The MgO NPs were characterized by Ultraviolet-visible (UV-Vis), Fourier-transform infrared (FTIR), X-ray diffraction (XRD), Energy dispersive X-ray (EDX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and zeta potential (ZP). The UV spectrum of the MgO NPs showed a sharp absorption peak at 330 nm. The FTIR results confirm that the bioactive compounds act as reducing and capping agents of synthesized MgO NPs. The XRD pattern showed three major peaks of the crystalline metallic MgO NPs. Presence of magnesium and oxygen were confirmed by EDX profile. Both SEM and TEM revealed the MgO NPs as roughly spherical granular structures, and the size was 26.70 nm. The zeta potential was -32.1 mV, which indicated the stability of the MgO NPs in suspension. The MgO NPs showed considerable antifungal and antibiofilm activities against Fusarium oxysporum f. sp. lycopersici. At the concentration of 15.36 µg/ml, the MgO NPs completely inhibited the mycelial growth of the fungus. The biofilm formation of the pathogen was completely suppressed by MgO NPs at 1.92 µg/ml. The MgO NPs caused severe morphological changes on the hyphal morphology and biofilm formation of the fungus with significant damage on the fungal membrane integrity.


Asunto(s)
Antifúngicos , Biopelículas/efectos de los fármacos , Burkholderia/química , Fusarium/fisiología , Óxido de Magnesio , Nanopartículas/química , Antifúngicos/química , Antifúngicos/farmacología , Biopelículas/crecimiento & desarrollo , Óxido de Magnesio/química , Óxido de Magnesio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...